苹果新研究:AI 不听录音,凭文本描述能零样本识别洗碗等 12 种活动

2025-11-22 发布 · 浏览19次 · 点赞0次 · 收藏0次

11 月 22 日消息,科技媒体 9to5Mac 昨日(11 月 21 日)发布博文,报道称在最新公布的研究报告中,苹果指出大语言模型(LLM)可通过分析音频和运动数据的文本描述,精准识别用户活动,未来可能会应用于 Apple Watch 上。

这项名为“后期多模态传感器融合”(Late Multimodal Sensor Fusion)的技术,主要结合 LLM 的推理能力与传统传感器数据,即使在传感器信息不足的情况下,也能精确判断用户正在进行的具体活动。

研究的核心方法颇具新意。大语言模型并未直接处理用户的原始音频录音或运动数据,而是分析由专门的小型模型生成的文本描述。

具体来说,音频模型会生成描述声音环境的文字(如“水流声”),而基于惯性测量单元(IMU)的运动模型则会输出动作类型的预测文本。这种方式不仅保护了用户隐私,还验证了 LLM 在理解和融合多源文本信息以进行复杂推理方面的强大能力。

为验证该方法,研究团队使用了包含数千小时第一人称视角视频的 Ego4D 数据集。他们从中筛选出 12 种日常活动,包括吸尘、烹饪、洗碗、打篮球、举重等,每段样本时长 20 秒。

随后,研究人员将小模型生成的文本描述输入给谷歌的 Gemini-2.5-pro 和阿里的 Qwen-32B 等多个大语言模型,并测试其在“零样本”(无任何示例)和“单样本”(提供一个示例)两种情况下的识别准确率。

测试结果显示,即使没有任何针对性地训练,大语言模型在活动识别任务中的表现也远超随机猜测的水平,其 F1 分数(衡量精确率和召回率的指标)表现优异。当获得一个参考示例后,模型的准确度还会进一步提升。

这项研究表明,利用 LLM 进行后期融合,可以有效开发出强大的多模态应用,而无需为特定场景开发专门模型,从而节省了额外的内存和计算资源。苹果公司还公开了实验数据和代码,以供其他研究者复现和验证。

苹果新研究:AI 不听录音,凭文本描述能零样本识别洗碗等 12 种活动 - AI 资讯 - 资讯 - AI 中文社区

声明:本文转载自IT 之家,转载目的在于传递更多信息,并不代表本社区赞同其观点和对其真实性负责,本文只提供参考并不构成任何建议,若有版权等问题,点击这里。本站拥有对此声明的最终解释权。如涉及作品内容、版权和其它问题,请联系我们删除,我方收到通知后第一时间删除内容。

点赞(0) 收藏(0)
0条评论
珍惜第一个评论,它能得到比较好的回应。
评论

游客
登录后再评论
  • 鸟过留鸣,人过留评。
  • 和谐社区,和谐点评。