速度秒掉GPT-4o、22B击败Llama 3 70B,Mistral AI开放首个代码模型

2024-05-31 发布 · 浏览75次 · 点赞0次 · 收藏0次

开放但禁止商用用途。


对标 OpenAI 的法国 AI 独角兽 Mistral AI 有了新动作:首个代码大模型 Codestral 诞生了。
图片
作为一个专为代码生成任务设计的开放式生成 AI 模型,Codestral 通过共享指令和补全 API 端点帮助开发人员编写并与代码交互。Codestral 精通代码和英语,因而可为软件开发人员设计高级 AI 应用。

Codestral 的参数规模为 22B,遵循新的 Mistral AI Non-Production License,可以用于研究和测试目的,但禁止商用。
图片
目前,该模型可以在 HuggingFace 上下载。
图片
  • 下载地址:https://huggingface.co/mistralai/Codestral-22B-v0.1
  • 免费试用地址:https://t.co/LsgC84GCYw

Mistral AI 联合创始人、首席科学家 Guillaume Lample 表示,Codestral 可以很轻松集成到 VS Code 插件中。
图片
有用户将 Codestral 与 GPT-4o 进行了比较,Codestral 速度直接秒了 GPT-4o。

图片

精通 80 + 编程语言

Codestral 在包含了 80 + 种编程语言的多样化数据集上训练,包括 Python、Java、C、C++、JavaScript、Bash 等流行编程语言。此外也在 Swift 和 Fortran 等编程语言上表现良好。

因此,广泛的语言基础确保 Codestral 可以在各种编码环境和项目中为开发人员提供帮助。

Codestral 可以胜任编写代码、 编写测试并使用中间填充(fill-in-the-middle)机制补全任何代码部分,为开发人员节省时间和精力。同时使用 Codestral,还有助于提高开发人员的编码水平,降低错误和 bug 风险。

代码生成性能新标准

作为一个 22B 参数的模型,Codestral 与以往的代码大模型相比,在代码生成性能和延迟空间方面树立了新标准。

从下图 1 可以看到,Codestral 的上下文窗口长度为 32k,竞品 CodeLlama 70B 为 4k、DeepSeek Coder 33B 为 16k、Llama 3 70B 为 8k。结果显示,在代码生成远程评估基准 RepoBench 上,Codestral 的表现优于其他模型。
图片
Mistral AI 还将 Codestral 与现有的特定于代码的模型进行了比较,后者需要较高的硬件需求。

在 Python 上的表现。研究者使用 HumanEval pass@1、MBPP sanitised pass@1 基准来评估 Codestral 的 Python 代码生成能力;除此以外,研究者还用到了 CruxEval、RepoBench EM 基准评估。

在 SQL 上的表现。为了评估 Codestral 在 SQL 中的性能,研究者使用了 Spider 基准测试。

在其他编程语言上的表现。研究者还在其他六种编程语言(包括 C++、bash、Java、PHP、Typescript 和 C#)中对 Codestral 进行了评估,并计算了这些评估的平均值。 
图片
FIM 基准。研究者还评估了 Codestral 在代码片段中间有缺失的情况下补全代码的能力,主要是在 Python、JavaScript 和 Java 上进行实验,结果显示,Codestral 补全的代码,用户可以立即运行。
图片
 博客地址:https://mistral.ai/news/codestral/
速度秒掉GPT-4o、22B击败Llama 3 70B,Mistral AI开放首个代码模型 - AI 资讯 - 资讯 - AI 中文社区

声明:本文转载自机器之心,转载目的在于传递更多信息,并不代表本社区赞同其观点和对其真实性负责,本文只提供参考并不构成任何建议,若有版权等问题,点击这里。本站拥有对此声明的最终解释权。如涉及作品内容、版权和其它问题,请联系我们删除,我方收到通知后第一时间删除内容。

点赞(0) 收藏(0)
0条评论
珍惜第一个评论,它能得到比较好的回应。
评论

游客
登录后再评论
  • 鸟过留鸣,人过留评。
  • 和谐社区,和谐点评。